set.seed(123)
100
N <- rnorm(N, 5, 20)
DV <- 0
muH0 <-t.test(DV, alternative="two.sided", mu=muH0)
One Sample t-test
data: DV
t = 3.7292, df = 99, p-value = 0.0003203
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
3.185669 10.430568
sample estimates:
mean of x
6.808118
(mean(DV) - muH0) / sd(DV)) (d <-
[1] 0.3729185
c(18, 21)
Nj <- rnorm(Nj[1], 180, 10)
DVm <- rnorm(Nj[2], 175, 6)
DVf <- data.frame(DV=c(DVm, DVf),
tIndDf <-IV=factor(rep(c("f", "m"), Nj)))
t.test(DVf, DVm, alternative="less", var.equal=TRUE)
t.test(DV ~ IV, alternative="greater", var.equal=TRUE, data=tIndDf)
Two Sample t-test
data: DV by IV
t = 1.1137, df = 37, p-value = 0.1363
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
-1.230298 Inf
sample estimates:
mean in group f mean in group m
177.0479 174.6580
t.test(DV ~ IV, alternative="greater", var.equal=FALSE, data=tIndDf)
Welch Two Sample t-test
data: DV by IV
t = 1.1032, df = 34.359, p-value = 0.1388
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
-1.27206 Inf
sample estimates:
mean in group f mean in group m
177.0479 174.6580
Nj[1]
n1 <- Nj[2]
n2 <- sqrt(((n1-1)*var(DVm) + (n2-1)*var(DVf)) / (n1+n2-2))
sdPool <- (mean(DVm) - mean(DVf)) / sdPool) (d <-
[1] 0.3577436
20
N <- rnorm(N, mean=90, sd=15)
DVpre <- rnorm(N, mean=100, sd=15)
DVpost <- data.frame(DV=c(DVpre, DVpost),
tDepDf <-IV=factor(rep(0:1, each=N), labels=c("pre", "post")))
t.test(DV ~ IV, alternative="less", paired=TRUE, data=tDepDf)
Paired t-test
data: DV by IV
t = -2.9918, df = 19, p-value = 0.003748
alternative hypothesis: true difference in means is less than 0
95 percent confidence interval:
-Inf -6.739295
sample estimates:
mean of the differences
-15.96821
DVpre - DVpost
DVdiff <-t.test(DVdiff, alternative="less")
mean(DVdiff) / sd(DVdiff)) (d <-
[1] -0.6689888
R markdown - markdown - R code - all posts