c("MASS", "ordinal", "rms", "VGAM")
wants <- wants %in% rownames(installed.packages())
has <-if(any(!has)) install.packages(wants[!has])
Dependent variable \(Y_{\text{ord}}\) with \(k=4\) groups, \(p=2\) predictor variables
set.seed(123)
100
N <- rnorm(N, 175, 7)
X1 <- rnorm(N, 30, 8)
X2 <- 0.5*X1 - 0.3*X2 + 10 + rnorm(N, 0, 6)
Ycont <- cut(Ycont, breaks=quantile(Ycont), include.lowest=TRUE,
Yord <-labels=c("--", "-", "+", "++"), ordered=TRUE)
data.frame(X1, X2, Yord) dfOrd <-
vglm()
from package VGAM
Model using cumulative logits: \(\text{logit}(p(Y \geq g)) = \ln \frac{P(Y \geq g)}{1 - P(Y \geq g)} = \beta_{0_{g}} + \beta_{1} X_{1} + \dots + \beta_{p} X_{p} \quad(g = 2, \ldots, k)\)
library(VGAM)
vglm(Yord ~ X1 + X2, family=propodds, data=dfOrd)) (vglmFit <-
Call:
vglm(formula = Yord ~ X1 + X2, family = propodds, data = dfOrd)
Coefficients:
(Intercept):1 (Intercept):2 (Intercept):3 X1 X2
-15.61123204 -17.00112492 -18.28506734 0.11197395 -0.09517965
Degrees of Freedom: 300 Total; 295 Residual
Residual deviance: 249.3579
Log-likelihood: -124.6789
Equivalent:
vglm(Yord ~ X1 + X2, family=cumulative(parallel=TRUE, reverse=TRUE), data=dfOrd)
# not shown
Adjacent category logits \(\ln \frac{P(Y=g)}{P(Y=g-1)}\) with proportional odds assumption
vglm(Yord ~ X1 + X2, family=acat(parallel=TRUE), data=dfOrd)
# not shown
Continuation ratio logits \(\ln \frac{P(Y=g)}{P(Y < g)}\) with proportional odds assumption (discrete version of Cox proportional hazards model for survival data)
vglm(Yord ~ X1 + X2, family=sratio(parallel=TRUE), data=dfOrd)
# not shown
orm()
from package rms
Model \(\text{logit}(p(Y \geq g)) = \beta_{0_{g}} + \beta_{1} X_{1} + \dots + \beta_{p} X_{p} \quad(g = 2, \ldots, k)\)
library(rms)
orm(Yord ~ X1 + X2, data=dfOrd)) (ormFit <-
Logistic (Proportional Odds) Ordinal Regression Model
orm(formula = Yord ~ X1 + X2, data = dfOrd)
Frequencies of Responses
-- - + ++
25 25 25 25
Model Likelihood Discrimination Rank Discrim.
Ratio Test Indexes Indexes
Obs 100 LR chi2 27.90 R2 0.260 rho 0.477
Unique Y 4 d.f. 2 g 1.176
Median Y 2 Pr(> chi2) <0.0001 gr 3.240
max |deriv| 0.003 Score chi2 28.50 |Pr(Y>=median)-0.5| 0.274
Pr(> chi2) <0.0001
Coef S.E. Wald Z Pr(>|Z|)
y>=- -15.6110 5.5109 -2.83 0.0046
y>=+ -17.0008 5.5508 -3.06 0.0022
y>=++ -18.2848 5.5863 -3.27 0.0011
X1 0.1120 0.0314 3.56 0.0004
X2 -0.0952 0.0272 -3.50 0.0005
polr()
from package MASS
Model \(\text{logit}(p(Y \leq g)) = \beta_{0_{g}} - (\beta_{1} X_{1} + \dots + \beta_{p} X_{p}) \quad(g = 1, \ldots, k-1)\)
library(MASS)
polr(Yord ~ X1 + X2, method="logistic", data=dfOrd))
(polrFit <-# not shown
Profile likelihood based confidence intervals (need to use MASS:::confint.polr()
instead of confint()
since other packages are loaded, and method is masked).
exp(MASS:::confint.polr(polrFit))
2.5 % 97.5 %
X1 1.0530865 1.1919021
X2 0.8602671 0.9574481
clm()
from package ordinal
Model \(\text{logit}(p(Y \leq g)) = \beta_{0_{g}} - (\beta_{1} X_{1} + \dots + \beta_{p} X_{p}) \quad(g = 1, \ldots, k-1)\)
library(ordinal)
clm(Yord ~ X1 + X2, link="logit", data=dfOrd))
(clmFit <-# not shown
VGAM::predict(vglmFit, type="response")
PhatCateg <-head(PhatCateg)
-- - + ++
1 0.22610471 0.3136747 0.2692008 0.1910199
2 0.32021125 0.3338845 0.2181580 0.1277463
3 0.07320949 0.1675519 0.2930451 0.4661935
4 0.19019915 0.2950991 0.2876648 0.2270369
5 0.12403581 0.2383874 0.3099813 0.3275955
6 0.07534083 0.1711326 0.2950389 0.4584877
predict(ormFit, type="fitted.ind")
predict(clmFit, subset(dfOrd, select=c("X1", "X2"), type="prob"))$fit
predict(polrFit, type="probs")
# not shown
levels(dfOrd$Yord)[max.col(PhatCateg)]
categHat <-head(categHat)
[1] "-" "-" "++" "-" "++" "++"
predict(clmFit, type="class")
predict(polrFit, type="class")
# not shown
3
Nnew <- data.frame(X1=rnorm(Nnew, 175, 7),
dfNew <-X2=rnorm(Nnew, 30, 8))
::predict(vglmFit, dfNew, type="response") VGAM
-- - + ++
1 0.8625341 0.09928134 0.02730933 0.01087521
2 0.5914519 0.26174070 0.10132180 0.04548565
3 0.2038282 0.30301019 0.28089185 0.21226981
predict(ormFit, dfNew, type="fitted.ind")
predict(polrFit, dfNew, type="probs")
predict(clmFit, subset(dfNew, select=c("X1", "X2"), type="prob"))$fit
# not shown
factor(categHat, levels=levels(dfOrd$Yord))
facHat <- xtabs(~ Yord + facHat, data=dfOrd)
cTab <-addmargins(cTab)
facHat
Yord -- - + ++ Sum
-- 17 4 3 1 25
- 5 11 2 7 25
+ 1 10 4 10 25
++ 3 9 2 11 25
Sum 26 34 11 29 100
Correct classification rate
sum(diag(cTab)) / sum(cTab)) (CCR <-
[1] 0.43
::deviance(vglmFit) VGAM
[1] 249.3579
::logLik(vglmFit) VGAM
[1] -124.6789
::AIC(vglmFit) VGAM
[1] 259.3579
Log-likelihoods for full model and 0-model without predictors X1, X2
vglm(Yord ~ 1, family=propodds, data=dfOrd)
vglm0 <- VGAM::logLik(vglmFit)
LLf <- VGAM::logLik(vglm0) LL0 <-
McFadden pseudo-\(R^2\)
as.vector(1 - (LLf / LL0))
[1] 0.1006315
Cox & Snell
as.vector(1 - exp((2/N) * (LL0 - LLf)))
[1] 0.2434676
Nagelkerke
as.vector((1 - exp((2/N) * (LL0 - LLf))) / (1 - exp(LL0)^(2/N)))
[1] 0.2596987
Estimated standard deviations, z-values and p-values for parameters based on assumption that z-values are asymptotically \(N(0, 1)\) distributed.
summary(vglmFit)
sumOrd <- coef(sumOrd)) (coefOrd <-
Estimate Std. Error z value Pr(>|z|)
(Intercept):1 -15.61123204 5.41912617 -2.880766 0.0039671060
(Intercept):2 -17.00112492 5.45613579 -3.115964 0.0018334440
(Intercept):3 -18.28506734 5.49803759 -3.325744 0.0008818278
X1 0.11197395 0.03122493 3.586043 0.0003357330
X2 -0.09517965 0.02694012 -3.533007 0.0004108612
Approximative Wald-based confidence intervals
qnorm(c(0.05/2, 1 - 0.05/2))
zCrit <- t(apply(coefOrd, 1, function(x) x["Estimate"] - zCrit*x["Std. Error"] ))) (ciCoef <-
[,1] [,2]
(Intercept):1 -4.98993991 -26.23252417
(Intercept):2 -6.30729528 -27.69495455
(Intercept):3 -7.50911167 -29.06102301
X1 0.17317368 0.05077421
X2 -0.04237798 -0.14798132
Tests for other models.
summary(polrFit)
Error in eval(expr, envir, enclos): Objekt 'dfOrd' nicht gefunden
summary(clmFit)
# not shown
Likelihood-ratio-test for predictor X2
We need to specify VGAM::lrtest()
here because after attaching package mlogit
above, there is another function present with the same name.
vglm(Yord ~ X1, family=propodds, data=dfOrd)
vglmR <-::lrtest(vglmFit, vglmR) VGAM
Likelihood ratio test
Model 1: Yord ~ X1 + X2
Model 2: Yord ~ X1
#Df LogLik Df Chisq Pr(>Chisq)
1 295 -124.68
2 296 -131.42 1 13.482 0.0002408 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Likelihood-ratio-test for the full model against the 0-model without predictors (just intercept)
::lrtest(vglmFit, vglm0) VGAM
Likelihood ratio test
Model 1: Yord ~ X1 + X2
Model 2: Yord ~ 1
#Df LogLik Df Chisq Pr(>Chisq)
1 295 -124.68
2 297 -138.63 2 27.901 8.737e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
vglm()
from package VGAM
vglm(Yord ~ X1 + X2, family=cumulative(parallel=TRUE, reverse=TRUE),
vglmP <-data=dfOrd)
# vglmNP <- vglm(Yord ~ X1 + X2, family=cumulative(parallel=FALSE, reverse=TRUE),
# data=dfOrd)
# VGAM::lrtest(vglmP, vglmNP)
clm()
from package ordinal
clm(Yord ~ X1 + X2, link="logit", data=dfOrd)
clmP <-
## model with non-proportional odds for X2:
clm(Yord ~ X1, nominal=~X2, data=dfOrd)
clmNP <-anova(clmP, clmNP)
Likelihood ratio tests of cumulative link models:
formula: nominal: link: threshold:
clmP Yord ~ X1 + X2 ~1 logit flexible
clmNP Yord ~ X1 ~X2 logit flexible
no.par AIC logLik LR.stat df Pr(>Chisq)
clmP 5 259.36 -124.68
clmNP 7 259.96 -122.98 3.398 2 0.1829
try(detach(package:ordinal))
try(detach(package:rms))
try(detach(package:Hmisc))
try(detach(package:lattice))
try(detach(package:survival))
try(detach(package:VGAM))
try(detach(package:splines))
try(detach(package:stats4))
try(detach(package:MASS))
try(detach(package:Formula))
try(detach(package:grid))
try(detach(package:SparseM))
R markdown - markdown - R code - all posts