N <- 5
numeric(N)[1] 0 0 0 0 0matrix(numeric(N)) [,1]
[1,] 0
[2,] 0
[3,] 0
[4,] 0
[5,] 0character(N)[1] "" "" "" "" ""vector(mode="list", length=N)[[1]]
NULL
[[2]]
NULL
[[3]]
NULL
[[4]]
NULL
[[5]]
NULL20:26[1] 20 21 22 23 24 25 2626:20[1] 26 25 24 23 22 21 20-4:2[1] -4 -3 -2 -1 0 1 2-(4:2)[1] -4 -3 -2seq(from=2, to=12, by=2)[1] 2 4 6 8 10 12seq(from=2, to=11, by=2)[1] 2 4 6 8 10seq(from=0, to=-1, length.out=5)[1] 0.00 -0.25 -0.50 -0.75 -1.00age <- c(18, 20, 30, 24, 23, 21)
seq(along=age)[1] 1 2 3 4 5 6vec <- numeric(0)
length(vec)[1] 01:length(vec)[1] 1 0seq(along=vec)integer(0)rep(1:3, times=5) [1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3rep(c("A", "B", "C"), times=c(2, 3, 4))[1] "A" "A" "B" "B" "B" "C" "C" "C" "C"rep(age, each=2) [1] 18 18 20 20 30 30 24 24 23 23 21 21Strictly, the data is pseudorandom. There are several options for the random number generator, see RNGkind(). Use set.seed() to set the state of the RNG. This allows to replicate the following sequence of numbers. Copy .Random.seed into your own object to save the current state of the RNG. Don’t modify .Random.seed.
set.seed(123)
sample(1:6, size=20, replace=TRUE) [1] 2 5 3 6 6 1 4 6 4 3 6 3 5 4 1 6 2 1 2 6sample(c("rot", "gruen", "blau"), size=8, replace=TRUE)[1] "blau" "blau" "gruen" "blau" "gruen" "blau" "gruen" "gruen"x <- c(2, 4, 6, 8)
sample(x[(x %% 4) == 0])[1] 4 8sample(x[(x %% 8) == 0])[1] 8 7 5 4 1 2 3 6runif(5, min=1, max=6)[1] 2.590905 2.158129 1.714000 3.072732 3.068622rbinom(20, size=5, prob=0.3) [1] 1 0 0 1 1 1 3 0 1 2 0 2 1 0 2 3 1 2 0 1rchisq(4, df=7)[1] 4.102661 9.427503 9.183538 8.622633rnorm(6, mean=100, sd=15)[1] 108.30876 99.07132 95.41056 94.29293 89.57940 96.88124rt(5, df=5, ncp=1)[1] -0.3553506 6.6387468 2.2656603 -0.1390429 0.4654493rf(5, df1=2, df2=10)[1] 1.4005108 2.9532047 0.4913562 7.5093655 0.6704753See ?Distributions for more distribution types. Even more information can be found in CRAN task view Probability Distributions.
R markdown - markdown - R code - all posts