5
N <-numeric(N)
[1] 0 0 0 0 0
matrix(numeric(N))
[,1]
[1,] 0
[2,] 0
[3,] 0
[4,] 0
[5,] 0
character(N)
[1] "" "" "" "" ""
vector(mode="list", length=N)
[[1]]
NULL
[[2]]
NULL
[[3]]
NULL
[[4]]
NULL
[[5]]
NULL
20:26
[1] 20 21 22 23 24 25 26
26:20
[1] 26 25 24 23 22 21 20
-4:2
[1] -4 -3 -2 -1 0 1 2
-(4:2)
[1] -4 -3 -2
seq(from=2, to=12, by=2)
[1] 2 4 6 8 10 12
seq(from=2, to=11, by=2)
[1] 2 4 6 8 10
seq(from=0, to=-1, length.out=5)
[1] 0.00 -0.25 -0.50 -0.75 -1.00
c(18, 20, 30, 24, 23, 21)
age <-seq(along=age)
[1] 1 2 3 4 5 6
numeric(0)
vec <-length(vec)
[1] 0
1:length(vec)
[1] 1 0
seq(along=vec)
integer(0)
rep(1:3, times=5)
[1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
rep(c("A", "B", "C"), times=c(2, 3, 4))
[1] "A" "A" "B" "B" "B" "C" "C" "C" "C"
rep(age, each=2)
[1] 18 18 20 20 30 30 24 24 23 23 21 21
Strictly, the data is pseudorandom. There are several options for the random number generator, see RNGkind()
. Use set.seed()
to set the state of the RNG. This allows to replicate the following sequence of numbers. Copy .Random.seed
into your own object to save the current state of the RNG. Don’t modify .Random.seed
.
set.seed(123)
sample(1:6, size=20, replace=TRUE)
[1] 2 5 3 6 6 1 4 6 4 3 6 3 5 4 1 6 2 1 2 6
sample(c("rot", "gruen", "blau"), size=8, replace=TRUE)
[1] "blau" "blau" "gruen" "blau" "gruen" "blau" "gruen" "gruen"
c(2, 4, 6, 8)
x <-sample(x[(x %% 4) == 0])
[1] 4 8
sample(x[(x %% 8) == 0])
[1] 8 7 5 4 1 2 3 6
runif(5, min=1, max=6)
[1] 2.590905 2.158129 1.714000 3.072732 3.068622
rbinom(20, size=5, prob=0.3)
[1] 1 0 0 1 1 1 3 0 1 2 0 2 1 0 2 3 1 2 0 1
rchisq(4, df=7)
[1] 4.102661 9.427503 9.183538 8.622633
rnorm(6, mean=100, sd=15)
[1] 108.30876 99.07132 95.41056 94.29293 89.57940 96.88124
rt(5, df=5, ncp=1)
[1] -0.3553506 6.6387468 2.2656603 -0.1390429 0.4654493
rf(5, df1=2, df2=10)
[1] 1.4005108 2.9532047 0.4913562 7.5093655 0.6704753
See ?Distributions
for more distribution types. Even more information can be found in CRAN task view Probability Distributions.
R markdown - markdown - R code - all posts