wants <- c("mvtnorm", "MASS")
has <- wants %in% rownames(installed.packages())
if(any(!has)) install.packages(wants[!has])set.seed(123)
library(mvtnorm)
Nj <- c(15, 25, 20)
Sigma <- matrix(c(16,-2, -2,9), byrow=TRUE, ncol=2)
mu1 <- c(-4, 4)
mu2 <- c( 3, 3)
mu3 <- c( 1, -1)
Y1 <- rmvnorm(Nj[1], mean=mu1, sigma=Sigma)
Y2 <- rmvnorm(Nj[2], mean=mu2, sigma=Sigma)
Y3 <- rmvnorm(Nj[3], mean=mu3, sigma=Sigma)
Y <- rbind(Y1, Y2, Y3)
IV <- factor(rep(1:length(Nj), Nj))
Ydf <- data.frame(IV, DV1=Y[ , 1], DV2=Y[ , 2])library(MASS)
(ldaRes <- lda(IV ~ DV1 + DV2, data=Ydf))Call:
lda(IV ~ DV1 + DV2, data = Ydf)
Prior probabilities of groups:
1 2 3
0.2500000 0.4166667 0.3333333
Group means:
DV1 DV2
1 -3.9300600 3.6858137
2 3.0763419 3.2682592
3 0.8326377 -0.8284297
Coefficients of linear discriminants:
LD1 LD2
DV1 0.30281673 -0.02978952
DV2 0.01135247 -0.34212141
Proportion of trace:
LD1 LD2
0.6019 0.3981 ldaP <- lda(IV ~ DV1 + DV2, CV=TRUE, data=Ydf)
head(ldaP$posterior) 1 2 3
1 0.87692334 0.03892749 0.08414917
2 0.05948677 0.77916960 0.16134364
3 0.75783381 0.22929176 0.01287443
4 0.23218561 0.16280484 0.60500954
5 0.87531088 0.02860185 0.09608726
6 0.15145306 0.71535330 0.13319364ldaPred <- predict(ldaRes, Ydf)
ld <- ldaPred$x
head(ld) LD1 LD2
1 -2.02645465 -0.30063936
2 0.51103261 -0.64927925
3 -1.29829423 -2.28573892
4 -0.74102145 0.72661802
5 -2.16732369 -0.07970205
6 0.09253344 -0.93543324cls <- ldaPred$class
head(cls)[1] 1 2 1 3 1 2
Levels: 1 2 3cTab <- table(IV, cls, dnn=c("IV", "ldaPred"))
addmargins(cTab) ldaPred
IV 1 2 3 Sum
1 9 4 2 15
2 3 19 3 25
3 1 4 15 20
Sum 13 27 20 60sum(diag(cTab)) / sum(cTab)[1] 0.7166667anova(lm(ld[ , 1] ~ IV))Analysis of Variance Table
Response: ld[, 1]
Df Sum Sq Mean Sq F value Pr(>F)
IV 2 42.074 21.037 21.037 1.437e-07 ***
Residuals 57 57.000 1.000
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1anova(lm(ld[ , 2] ~ IV))Analysis of Variance Table
Response: ld[, 2]
Df Sum Sq Mean Sq F value Pr(>F)
IV 2 27.831 13.916 13.916 1.198e-05 ***
Residuals 57 57.000 1.000
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1priorP <- rep(1/nlevels(IV), nlevels(IV))
ldaEq <- lda(IV ~ DV1 + DV2, prior=priorP, data=Ydf)library(MASS)
(ldaRob <- lda(IV ~ DV1 + DV2, method="mve", data=Ydf))Call:
lda(IV ~ DV1 + DV2, data = Ydf, method = "mve")
Prior probabilities of groups:
1 2 3
0.2500000 0.4166667 0.3333333
Group means:
DV1 DV2
1 -3.9300600 3.6858137
2 3.0763419 3.2682592
3 0.8326377 -0.8284297
Coefficients of linear discriminants:
LD1 LD2
DV1 0.1597400 -0.2562351
DV2 -0.3714238 -0.2406715
Proportion of trace:
LD1 LD2
0.5715 0.4285 predict(ldaRob)$class [1] 1 2 1 3 1 2 1 1 3 2 1 1 3 2 1 2 2 2 2 2 2 1 3 2 2 2 2 2 1 2 2 3 1 2 2
[36] 3 2 2 3 2 3 3 3 3 2 2 3 3 2 3 3 3 3 3 2 3 3 3 3 3
Levels: 1 2 3library(MASS)
(qdaRes <- qda(IV ~ DV1 + DV2, data=Ydf))Call:
qda(IV ~ DV1 + DV2, data = Ydf)
Prior probabilities of groups:
1 2 3
0.2500000 0.4166667 0.3333333
Group means:
DV1 DV2
1 -3.9300600 3.6858137
2 3.0763419 3.2682592
3 0.8326377 -0.8284297predict(qdaRes)$class [1] 1 2 1 3 1 2 1 1 3 1 1 1 3 2 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1 2 2 3 1 2 2
[36] 3 2 2 3 2 3 3 3 2 2 2 3 2 2 3 3 3 3 3 3 3 3 3 3 3
Levels: 1 2 3try(detach(package:MASS))
try(detach(package:mvtnorm))R markdown - markdown - R code - all posts